
tanuna Documentation
Release 0.1

Adrian Schlatter

Apr 14, 2023





CONTENTS

1 tanuna 1
1.1 Diving In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Examples 5
2.1 Mode-Locked Laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 API Documentation 9
3.1 Package Root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Continuous-Time LTI Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Bibliography 13

Python Module Index 15

Index 17

i



ii



CHAPTER

ONE

TANUNA

tanuna provides tools to work with dynamic systems. This currently includes

• continuous- but not discrete-time systems

• linear systems

• time-independent systems

• Single-Input Single-Output (SISO) and Multiple-Input Multiple-Output (MISO) systems

In the following, we will explain how to:

• create systems

• analyze systems

• solve systems

• combine systems

1.1 Diving In

Let’s start with some examples based on a continuous-time, second-order LTI SISO system:

import tanuna as dyn
import numpy as np
import matplotlib.pyplot as pl

w0 = 2 * np.pi * 10
zeta = 0.5
k = 1.

A = np.matrix([[0, w0], [-w0, -2*zeta*w0]])
B = np.matrix([0, k*w0]).T
C = np.matrix([k, 0.])
D = np.matrix([0.])

G = dyn.CT_LTI_System(A, B, C, D)

This creates the system G from state-space matrices A, B, C, D. The system provides some interesting information:

>>> G.stable
True

(continues on next page)

1



tanuna Documentation, Release 0.1

(continued from previous page)

>>> G.poles
array([-31.41592654+54.41398093j, -31.41592654-54.41398093j])
>>> G.reachable
True
>>> # Reachability matrix:
... G.Wr
matrix([[ 0. , 3947.84176044],

[ 62.83185307, -3947.84176044]])
>>> G.observable
True
>>> # Observability matrix:
... G.Wo
matrix([[ 1. , 0. ],

[ 0. , 62.83185307]])

Furthermore, it calculates step- and impulse-responses, Bode- and Nyquist-plots:

# -*- coding: utf-8 -*-

import tanuna as dyn
import numpy as np
import matplotlib.pyplot as pl

w0 = 2 * np.pi * 10
zeta = 0.5
k = 1.

A = np.matrix([[0, w0], [-w0, -2*zeta*w0]])
B = np.matrix([0, k*w0]).T
C = np.matrix([k, 0.])
D = np.matrix([0.])

G = dyn.CT_LTI_System(A, B, C, D)

pl.figure(figsize=(6, 12))

# STEP RESPONSE
pl.subplot(4, 1, 1)
pl.title('Step-Response')
t, sr = G.stepResponse()
pl.plot(t, sr[:, 0, 0])
pl.xlabel('Time After Step (s)')
pl.ylabel('y')

# IMPULSE RESPONSE
pl.subplot(4, 1, 2)
pl.title('Impulse-Response')
t, ir = G.impulseResponse()
pl.plot(t, ir[:, 0, 0])
pl.xlabel('Time After Impulse (s)')
pl.ylabel('y')

(continues on next page)

2 Chapter 1. tanuna



tanuna Documentation, Release 0.1

(continued from previous page)

# BODE PLOT
ax1 = pl.subplot(4, 1, 3)
ax1.set_title('Bode Plot')
f, Chi = G.freqResponse()
ax1.semilogx(f, 20 * np.log10(np.abs(Chi[:, 0, 0])), r'b-')
ax1.set_xlabel('Frequency (Hz)')
ax1.set_ylabel('Magnitude (dB)')
ax2 = ax1.twinx()
ax2.semilogx(f, np.angle(Chi[:, 0, 0]) / np.pi, r'r-')
ax2.set_ylabel('Phase ($\pi$)', va='bottom', rotation=270)

# NYQUIST PLOT
ax = pl.subplot(4, 1, 4)
pl.title('Nyquist Plot')
pl.plot(np.real(Chi[:, 0, 0]), np.imag(Chi[:, 0, 0]))
pl.plot([-1], [0], r'ro')
pl.xlim([-3., 3])
pl.ylim([-1.5, 0.5])
ax.set_aspect('equal')
pl.axhline(y=0, color='k')
pl.axvline(x=0, color='k')
pl.xlabel('Real Part')
pl.ylabel('Imaginary Part')

pl.subplots_adjust(top=0.96, bottom=0.06, right=0.87, hspace=0.5)

The duration of the trace and the density of samples is automatically determined for you based on the Eigenvalues of
the system (but you can provide your own if you prefer).

System-algebra is supported: You can connect systems in series, in parallel (creating a MIMO system from 2 SISO
systems for example), and in feedback configuration:

>>> # Connect G in series with G:
... H = G * G
>>> # Connect G in parallel with G:
... J = G + G
>>> # This is the same as 2 * G:
... G + G == 2 * G
True
>>> # Check number of inputs and outputs:
... (2 * G).shape
(1, 1)
>>> G.shape
(1, 1)
>>> H.shape
(1, 1)

1.1. Diving In 3



tanuna Documentation, Release 0.1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time After Step (s)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

y

Step-Response

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time After Impulse (s)

0

10

20

30

y

Impulse-Response

101 102

Frequency (Hz)

60
50
40
30
20
10
0

M
ag

ni
tu

de
 (d

B)

Bode Plot

1.0

0.8

0.6

0.4

0.2

Phase (
)

3 2 1 0 1 2 3
Real Part

1.5

1.0

0.5

0.0

0.5

Im
ag

in
ar

y 
Pa

rt

Nyquist Plot

4 Chapter 1. tanuna



CHAPTER

TWO

EXAMPLES

2.1 Mode-Locked Laser

A mode-locked laser is a type of laser that operates in pulsed mode. This is achieved, e.g., by placing a saturable
absorber inside the laser cavity. The saturable absorber has high losses for low light intensity but low losses for high
intensity. This forces the laser to concentrate its light in short (and therefore intense) pulses.

However, the saturable absorber also leads to stability issues: When the pulse energy increases from its steady-state
value, the saturable losses decrease - and vice versa. This tends to amplify deviations from the steady state and leads
to so called Q-switched mode locking if not properly controlled. In Q-switched mode locking the laser emits bunches
of pulses instead of a continuous stream of equally strong pulses.

Typically, Q-switched mode locking is avoided by proper design of the laser. Here, we don’t do that. Instead, we design
a state-feedback controller that stabilizes the laser by acting on its pump power.

The mode-locked laser is governed by the following differential equations:

�̇� =
𝑔 − 𝑙 − 𝑞𝑃 (𝐸𝑃 )

𝑇𝑅
· 𝑃

�̇� =
𝜂𝑃𝑃𝑃

𝐸𝑠𝑎𝑡,𝐿
− 𝑔

𝜏𝐿
− 𝑃 · 𝑔

𝐸𝑠𝑎𝑡,𝐿

𝑞𝑃 (𝑆 = 𝐸𝑃 /𝐸𝑠𝑎𝑡,𝐴) =
∆𝑅

𝑆
·
(︀
1 − 𝑒−𝑆

)︀
where 𝑃 the power inside the laser cavity, 𝑔 the gain provided by the gain medium, 𝑙 and 𝑞𝑃 (𝐸𝑃 ) the linear and non-
linear losses, respectively, 𝐸𝑃 = 𝑃 · 𝑇𝑅 the pulse energy, and 𝑇𝑅 the time it takes the pulse to travel around the cavity
once. 𝐸𝑠𝑎𝑡,𝐿 and 𝐸𝑠𝑎𝑡,𝐴 are the saturation energies of the gain medium and the saturable absorber, respectively, and
𝜏𝐿 the relaxation time of the gain.

The examples package includes the module ‘laser’ that provides a class to simulate such a laser. The class also includes
a method ‘approximateLTI’ that returns the linear approximation around the steady state, i.e., a CT_LTI_System.

2.1.1 Q-Switching Instability

First, let’s have a look at this Q-switching instability. We instantiate the NdYVO4 laser class defined in the examples
package and choose a low pump power to assure that it Q-switches (0.1 Watts is appropriate). Then, we solve the
differential equations to obtain 𝑃 (𝑡) and 𝑔(𝑡):

from tanuna.examples.laser import NdYVO4Laser
from tanuna.sources import SourceConstant
from tanuna import connect
import numpy as np

(continues on next page)

5



tanuna Documentation, Release 0.1

(continued from previous page)

Ppump = 0.1
NdYVO4 = NdYVO4Laser(Ppump)
pump = SourceConstant(y=np.matrix(Ppump))
pumped_NdYVO4 = connect(NdYVO4, pump)

# ODE solving
# =============================================================================

Psteady, gsteady = NdYVO4.steadystate(Ppump)
t = np.arange(35000) * NdYVO4.TR

Pout, state = pumped_NdYVO4(t, return_state=True, method='DOP853')
P, g = state

The streamplot below shows that the laser’s state spirals away from the (unstable) steady state towards a limit cycle.
The energy of the mode-locked pulses (and therefore 𝑃𝑜𝑢𝑡) is pulsating. This is what we will elliminate in the next
section.

2.1.2 Control

By linear approximation around the (unstable) steady-state, we create a second order LTI. This system is also modified
so that it not only provides the laser power as output but the internal state as well:

˙⃗𝑥 = 𝐴�⃗� + 𝐵𝑢

�⃗� =

⎡⎣ 0 𝑇𝑜𝑐

1 0
0 1

⎤⎦ �⃗�

where �⃗� =
[︁
𝛿�̇� /𝜔0, 𝛿𝑃

]︁𝑇
is the (transformed!) state and 𝑢 = 𝛿𝑃𝑃 the deviation from the (design-) pump power.

from tanuna.examples.laser import NdYVO4Laser
from tanuna.sources import SourceConstant
import numpy as np
import tanuna as dyn

# Setup laser
# =============================================================================

Ppump = 0.1
NdYVO4 = NdYVO4Laser(Ppump=0.)

# Linearized
# =============================================================================

M, system_lin = NdYVO4.approximateLTI(Ppump)
# Add state outputs:
A, B, C, D = system_lin.ABCD
Toc = NdYVO4.Toc

(continues on next page)

6 Chapter 2. Examples



tanuna Documentation, Release 0.1

(continued from previous page)

C = np.matrix([[0, Toc],
[1, 0],
[0, 1]])

D = np.matrix(np.zeros((3, 1)))
system_lin = dyn.CT_LTI_System(A, B, C, D)

Next, we add (state-) feedback to obtain the controlled system:

Fig. 1: Block diagram of laser with state feedback.

𝑟 is the control input, 𝑘𝑟 a constant, and 𝐾 = [0, 𝑘1, 𝑘2] the feedback matrix.

We can now choose 𝐾 in such a way that the stabilized systems has poles where we want them. It can be shown that
to obtain poles at:

𝑝1,2 = −𝛾𝜔0 ±
√
𝜈|𝜔0|

we have to choose

𝐾 =
[︀
0, 2(𝛾 − 𝜁)/𝜌, (𝛾2 − 𝜈 − 1)/𝜌

]︀
where 𝜁 is the damping ratio of the free-running system. Further, we choose 𝑘𝑟 = 𝛾2−𝜈 to obtain the same DC-gain as
in the uncontrolled system. If the system is known perfectly and if the feedback is implemented exactly as calculated,
the dynamics of the controlled system will be exactly as intended. In reality, neither is true. Therefore, we assume
errors in the knowledge of 𝑃𝑃 (factor 1.5) and the calibration of the feedback, i.e., in 𝑘𝑟, 𝑘1, and 𝑘2 (factor of 0.8,
each):

# Where we want the poles to be:
gamma = 0.05
nu = -1.
# => poles will be at -gamma * w0 +/- sqrt(nu) * w0 = -0.05 * w0 +/- i * w0

# We assume that the controller is not calibrated perfectly.
# a) The assumed pump power is factor rPp from real pump power
# b) The implemented feedback is factors rkr, rk1, rk2 from calculated values
# Note how large we choose the errors!
rPp = 1.5
rkr = 0.8
rk1 = 0.8
rk2 = 0.8

# Calculate and apply feedback:
Ppump_assumed = rPp * Ppump
kr = rkr * (gamma**2 - nu)
k1 = rk1 * 2 * (gamma - NdYVO4.zeta(Ppump_assumed)) / NdYVO4.rho(Ppump_assumed)
k2 = rk2 * (gamma**2 - nu - 1.) / NdYVO4.rho(Ppump_assumed)

stateoutput = np.matrix([[1, 0, 0]])
K = np.matrix([[0, k1, k2]])
L = np.vstack([stateoutput, K])
summing = np.matrix([kr, -1])
stabilized_lin = L * system_lin * summing
stabilized_lin = dyn.feedback(stabilized_lin, Gout=(1,), Gin=(1,))

2.1. Mode-Locked Laser 7



tanuna Documentation, Release 0.1

Now, let’s compare to the free-running system. The figure below shows the step-response and the poles of the free-
running and the controlled system. As expected, the relaxation oscillation are damped, resulting in a stable system.
The gain is not exactly what we aimed for (green curve is not converging towards the target gain (dashed line). Given
the large errors we have assumed this is - however - still a quite acceptable result.

Let’s see whether this works as nicely when applied to the original, non-linear system. Particularly, after turning on
the laser it is far away from the steady-state we linearized it around and may behave quite differently than shown in the
linear simulation shown above. In contrast to the simulation of the linearized system above, we will not start from the
steady-state and feed a step. Instead, we will start with the laser turned off (:math: P_{pump} = 0), the set the pump
power to a level that usually leads to Q-switching:

class StateOutputLaser(NdYVO4Laser):
"""Same as NdYVO4Laser but outputs (Pout, g, P) instead of only Pout."""

def __init__(self, Ppump=0.):
super().__init__(Ppump=Ppump)
self.shape = (3, 1)

def g(self, t, s, u):
"""
This is the output function of the CT_System and returns the
output power of the laser. Despite its name, is *not* related
to the laser's gain!
"""
P, g = s
return np.matrix([self.Toc * P, P, g])

so_NdYVO4 = StateOutputLaser(Ppump=0.0)
so_NdYVO4.s = np.matrix([[0.1, 0]]).T # "noise photons"

P0, g0 = so_NdYVO4.steadystate((Ppump))

y0 = np.matrix([[0], [-P0], [-g0]])
stabilized = so_NdYVO4.offset_outputs(y0)
stabilized = stabilized.offset_inputs(Ppump)
Maugmented = np.eye(3)
Maugmented[1:, 1:] = M
stabilized = L * Maugmented * stabilized * summing
stabilized = dyn.feedback(stabilized, Gout=(1,), Gin=(1,))
stabilized = dyn.connect(stabilized, SourceConstant(y=np.matrix(0.)))
system = dyn.connect(so_NdYVO4, SourceConstant(y=np.matrix(Ppump)))

The laser still goes through a few Q-switching cycles but the control manages to damp them. Note, however, that some
modulation remains. Apparently, the system still has a limit cycle, albeit a much smaller one than the unstabilized laser.

8 Chapter 2. Examples



CHAPTER

THREE

API DOCUMENTATION

3.1 Package Root

Root module of tanuna package.

@author: Adrian Schlatter

exception tanuna.root.ApproximationError

class tanuna.root.CT_LTI_System(A, B, C, D, x0=None)
Continuous-time, Linear, time-invariant system

property Wo

Observability matrix

property Wr

Reachability matrix

freqResponse(f=None)
Returns (f, r), where

f : Array of frequencies r : (Complex) frequency response

f is either provided as an argument to thin function or determined automatically.

impulseResponse(t=None)
Returns (t, yimpulse), where

yimpulse : Impulse response (without direct term D) t : Corresponding array of times

t is either provided as an argument to this function or determined automatically.

property observable

Returns True if the system is observable.

property order

The order of the system

property poles

Eigenvalues of the state matrix

property reachable

Returns True if the system is reachable.

property shape

Number of outputs and inputs

9



tanuna Documentation, Release 0.1

stepResponse(t=None)
Returns (t, ystep), where

ystep : Step response t : Corresponding array of times

t is either provided as an argument to this function or determined automatically.

property tf

Transfer-function representation [b, a] of the system. Returns numerator (b) and denominator (a) coeffi-
cients.

𝐺(𝑠) =
𝑏[0] * 𝑠0 + ... + 𝑏[𝑚] * 𝑠𝑚

𝑎[0] * 𝑠0 + ... + 𝑎[𝑛] * 𝑠𝑛

property zpk

Gain, Pole, Zero representation of the system. Returns a tuple (z, p, k) with z the zeros, p the poles, and k
the gain of the system. p is an array. The format of z and k depends on the number of inputs and outputs of
the system:

For a SISO system z is an array and k is float. For a system with more inputs or outputs, z and k are lists of
‘shape’ (nout, nin) containing arrays and floats, respectively.

class tanuna.root.CT_System(f, g, s0)
Describes a continuous-time system with dynamics described by ordinary differential equations.

s: Internal state (vector) of the system s0: Initial state of the system u: External input (vector)

f(t, s, u): Dynamics of the system (ds/dt = f(t, s, u)) g(t, s, u): Function that maps state s to output y
= g(t, s, u)

It is solved by simply calling it with an argument t. t is either a float or array-like. In the latter case, the system
is solved for all the times t in the array.

observable(t)
Returns whether the system is observable at time t (i.e. its internal state is determinable from inputs u and
outputs y).

reachable(t)
Returns whether the system is reachable at time t (i.e. all states are reachable by providing an appropriate
input u(t)).

steadyStates(u0, t)
Returns a list of tuples (s_i, stability_i) with:

• s_i: A steady-state at time t, i.e. f(t, s_i, u0) = 0

• stability_i: True if this steady-state is stable, false otherwise

tangentLTI(s0, u0, t)
Approximates the CT_System at time t near state s0 and input u0 by an LTISystem (linear, time-invariant
system). Raises ApproximationError if the system can not be linearized.

exception tanuna.root.ConnectionError

class tanuna.root.DT_LTI_System(A, B, C, D, x0=matrix([[0.], [0.]]))
Implements the discrete-time linear, time-invariant system with input vector u[t], internal state vector x[t], and
output vector y[t]:

x[t+1] = A * x[t] + B * u[t] y[t] = C * x[t] + D * u[t]

10 Chapter 3. API Documentation



tanuna Documentation, Release 0.1

where
A: state matrix B: input matrix C: output matrix D: feedthrough matrix

The system is initialized with state vector x[0] = x0.

classmethod fromTransferFunction(phi)
Initialize DiscreteLTI instance from transfer-function coefficients ‘Theta’ and ‘phi’.

observable()

Returns true if the system is observable

proper()

Returns true if the system’s transfer function is strictly proper, i.e. the degree of the numerator is less than
the degree of the denominator.

reachable()

Returns True if the system is observable

stable()

Returns True if the system is strictly stable

tf()

Returns the transfer function (b, a) where ‘b’ are the coefficients of the nominator polynomial and ‘a’ are
the coefficients of the denominator polynomial.

class tanuna.root.DT_LTV_System(At, Bt, Ct, Dt, X0)
Implements the discrete linear, time-variant system with input vector u[t], internal state vector x[t], and output
vector y[t]:

x[t+1] = A[t]*x[t] + B[t]*u[t] y[t] = C*x[t] + D*u[t]

where
A[t]: state matrices B[t]: input matrices C[t]: output matrices D[t]: feedthrough matrices

The system is initialized with state vector x[0] = X0.

exception tanuna.root.MatrixError

tanuna.root.Thetaphi(b, a)
Translate filter-coefficient arrays b and a to Theta, phi representation:

phi(B)*y_t = Theta(B)*x_t

Theta, phi = Thetaphi(b, a) are the coefficient of the back-shift-operator polynomials (index i belongs to B^i)

tanuna.root.ba(Theta, phi)
Translate backshift-operator polynomials Theta and phi to filter coefficient array b, a.

a[0]*y[t] = a[1]*y[t-1] + . . . + a[n]*y[t-n] + b[0]*x[t] + . . . + b[m]*x[t-m]

tanuna.root.cofactorMat(A)
Cofactor matrix of matrix A. Can handle matrices of poly1d.

tanuna.root.connect(H, G, Gout=None, Hin=None)
Connect outputs Gout of G to inputs Hin of H. The outputs and inputs of the connected system are arranged as
follows:

• remaining outputs of G get lower, the outputs of H the higher indices

• inputs of G get the lower, remaining inputs of H the higher indices

3.1. Package Root 11



tanuna Documentation, Release 0.1

connect(H, G) is equivalent to H * G.

tanuna.root.determinant(A)
Determinant of square matrix A. Can handle matrices of poly1d.

tanuna.root.differenceEquation(b, a)
Takes filter coefficient arrays b and a and returns string with difference equation using powers of B, where B the
backshift operator.

tanuna.root.feedback(G, Gout, Gin)
Create feedback connection from outputs Gout to inputs Gin

tanuna.root.minor(A, i, j)
Returns matrix obtained by deleting row i and column j from matrix A.

tanuna.root.polyDiag(polyList)
Construct diagonal matrix from list of poly1d

3.2 Continuous-Time LTI Library

Library of ready-to-use continuous-time LTI systems.

@author: Adrian Schlatter

class tanuna.CT_LTI.HighPass(fC, k=1.0)
High-Pass Filter with 3-dB frequency fC and pass-band gain k

class tanuna.CT_LTI.LowPass(fC, k=1.0)
Low-Pass Filter with 3-dB frequency fC and DC-gain k

class tanuna.CT_LTI.Order2(w0, zeta, k)
A second-order system with

• w0: Natural frequency

• zeta: Damping ratio (0: undamped, 1: critically damped)

• k: Gain

12 Chapter 3. API Documentation



BIBLIOGRAPHY

[feedback_systems] Karl Johan Åström and Richard M. Murray, “Feedback Systems”, Princeton University Press,
2012

13

http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-hyperref_28Sep12.pdf


tanuna Documentation, Release 0.1

14 Bibliography



PYTHON MODULE INDEX

t
tanuna.CT_LTI, 12
tanuna.root, 9

15



tanuna Documentation, Release 0.1

16 Python Module Index



INDEX

A
ApproximationError, 9

B
ba() (in module tanuna.root), 11

C
cofactorMat() (in module tanuna.root), 11
connect() (in module tanuna.root), 11
ConnectionError, 10
CT_LTI_System (class in tanuna.root), 9
CT_System (class in tanuna.root), 10

D
determinant() (in module tanuna.root), 12
differenceEquation() (in module tanuna.root), 12
DT_LTI_System (class in tanuna.root), 10
DT_LTV_System (class in tanuna.root), 11

F
feedback() (in module tanuna.root), 12
freqResponse() (tanuna.root.CT_LTI_System method),

9
fromTransferFunction()

(tanuna.root.DT_LTI_System class method), 11

H
HighPass (class in tanuna.CT_LTI), 12

I
impulseResponse() (tanuna.root.CT_LTI_System

method), 9

L
LowPass (class in tanuna.CT_LTI), 12

M
MatrixError, 11
minor() (in module tanuna.root), 12
module

tanuna.CT_LTI, 12

tanuna.root, 9

O
observable (tanuna.root.CT_LTI_System property), 9
observable() (tanuna.root.CT_System method), 10
observable() (tanuna.root.DT_LTI_System method),

11
order (tanuna.root.CT_LTI_System property), 9
Order2 (class in tanuna.CT_LTI), 12

P
poles (tanuna.root.CT_LTI_System property), 9
polyDiag() (in module tanuna.root), 12
proper() (tanuna.root.DT_LTI_System method), 11

R
reachable (tanuna.root.CT_LTI_System property), 9
reachable() (tanuna.root.CT_System method), 10
reachable() (tanuna.root.DT_LTI_System method), 11

S
shape (tanuna.root.CT_LTI_System property), 9
stable() (tanuna.root.DT_LTI_System method), 11
steadyStates() (tanuna.root.CT_System method), 10
stepResponse() (tanuna.root.CT_LTI_System method),

9

T
tangentLTI() (tanuna.root.CT_System method), 10
tanuna.CT_LTI
module, 12

tanuna.root
module, 9

tf (tanuna.root.CT_LTI_System property), 10
tf() (tanuna.root.DT_LTI_System method), 11
Thetaphi() (in module tanuna.root), 11

W
Wo (tanuna.root.CT_LTI_System property), 9
Wr (tanuna.root.CT_LTI_System property), 9

Z
zpk (tanuna.root.CT_LTI_System property), 10

17


	tanuna
	Diving In

	Examples
	Mode-Locked Laser
	Q-Switching Instability
	Control


	API Documentation
	Package Root
	Continuous-Time LTI Library

	Bibliography
	Python Module Index
	Index

